
Speeds of Sphere Engines.

Section 1: The code1
For: increment in Check:

 for (var i = 0; i++ < 10000000;) { }

For: increment in Step:

 for (var i = 0; i < 10000000; i++) { }

For: increment in Body:

 for (var i = 0; i < 10000000;) { i++; }

For: addition by 1 in Step:

 for (var i = 0; i < 10000000; i += 1) { }

For: addition by 1 in Body:

 for (var i = 0; i < 10000000;) { i += 1; }

For: addition by 2 in step:

 for (var i = 0; i < 10000000; i += 2) { }

For: addition by 1 in Step and Body:

 for (var i = 0; i < 10000000; i++) { i++; }

While: increment in Check:

 var i = 0;

 while (i++ < 10000000) { }

While: increment in Body:

 var i = 0;

 while (i < 10000000) { i++; }

1
 Pure ECMA Script v5.

Section 2: The Tests2

Table 1: Sphere v1.5
Name of Test: Total time (milliseconds)

For: increment in Check 891.6

For: increment in Step 1062.8

For: increment in Body 1062.3

For: addition by 1 in Step 1319.7

For: addition by 1 in Body 1319.4

For: addition by 2 in Step 662.9

For: addition by 1 in Step and Body 715.0

While: increment in Step 897.7

While: increment in Body 1061.8

Table 2: Sphere v1.6
Name of Test: Total time (milliseconds)

For: increment in Check 397.5

For: increment in Step 561.6

For: increment in Body 559.7

For: addition by 1 in Step 958.4

For: addition by 1 in Body 963.2

For: addition by 2 in Step 487.5

For: addition by 1 in Step and Body 462.8

While: increment in Check 396.2

While: increment in Body 564.0

Table 3: Sphere SFML
Name of Test: Total time (milliseconds)

For: increment in Check 28.0

For: increment in Step 19.9

For: increment in Body 30.4

For: addition by 1 in Step 336.7

For: addition by 1 in Body 335.5

For: addition by 2 in Step 171.3

For: addition by 1 in Step and Body 28.9

While: increment in Check 27.6

While: increment in Body 30.6

2
 Tested on an Intel i5 3.30Ghz processor with 8GB of 1600 speed RAM running Sphere natively on Windows 7 sp1.

Section 3: Conclusion
 It seems out of the results in the tables, while loops tend to be the fastest. But there is an

interesting innovation I made early on: a for loop with an increment in its check is rival to the speed of a

while loop with an increment in its check.

 In SSFML, which is my Jurassic and SFML based Sphere Engine, which compiles JS to CIL, runs

markedly faster, up to 28x vs. Sphere 1.6 and 56x vs. Sphere 1.5. And Sphere 1.6 is about two times

faster than Sphere 1.5. I notice that the addition operator is markedly slower in all engines vs. its

increment counterpart. I was surprised to see in the SSFML, that the addition operator is about 17 times

slower. In fact, both Sphere 1.6 and SSFML it's cheaper to increment twice than to use the addition

operator. (Particularly in SSFML, it seems that repeating the increment operator on loops even up to +=

12 would still hold a slight advantage).

